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Abstract

In this paper, our goal is to characterize channelized permeability field given dynamic data, such
as production data. Our prior models consist of log-Gaussian fields separated by interfaces. The
interfaces are modeled by using a level set approach that allows reducing the parameterization of the
interfaces to the parameterization of velocity fields that are smooth spatial fields. Smooth spatial
fields are parameterized by using Karhunen-Loève expansion. We discuss regularity of the posterior
and efficient sampling using approximate models. A numerical example is included.

1 Model problem and Bayesian sampling

The main objective of the paper is to use Bayesian uncertainty quantification methodology in subsur-
face characterization. Bayesian hierarchical models are used to integrate data from different sources.
We consider channelized subsurface formations, and our goal is to quantify the uncertainty in the per-
meability field and, subsequently, in the predictions, given the dynamic water-cut or fractional flow
data.

In this paper, for simplicity, we consider two-phase immiscible flow and transport under additional
assumptions where we neglect the effects of gravity, compressibility, and capillary pressure. In this case,
the forward model can be written as a coupled pressure and saturation equation:

∇ · (λ(S) k∇p) = Qs,
∂S

∂t
+ v ·∇f(S) = 0, (1)

where λ is the total mobility, Qs is a source term, f is the fractional flux of water, and v = −λ(S) k∇p
is the total velocity. The nonlinear functions λ(S) and f(S) depend on relative permeability fields.
In our simulations, we are interested in conditioning permeability field to dynamic data such as the
water-cut. The water cut is defined as the fraction of water produced in relation to the total production
rate, denoted by Ft (denoted simply by F in further discussion). F for a two-phase water-oil flow is
defined as the fraction of water in the produced fluid and is given by qw/qt, where qt = qo + qw, with qo

and qw the flow rates of oil and water at the production edge of the model, Ft =
∫
∂Ωout vnf(S)dlF∫

∂Ωout vndlF
, where

∂Ωout is the outflow boundary and vn is the normal velocity field.
The Bayesian model for the observed water-cut data and the unknown permeability field can be

written as z = F (k) + ε, where the unknown fine-scale permeability is denoted by k, z is the observed
water-cut data, and ε is the model error. We assume ε ∼ N(0,σ2

k). The Bayesian model casts the
inverse solution as the posterior distribution of k, given by

π(k) = P (k|z) ∝ P (z|k)P (k), (2)

where P (z|k) is called the likelihood and P (k) is called the prior.
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2 Parameterization of channelized fields

In parameterization, we would like to achieve a small-dimensional parameter space that can represent
the permeabilities. We will assume that the permeability field consists of regions (called facies) where
within each region the field can be described by a log-Gaussian field. Our goal is to represent boundaries
and the permeability distribution within facies with fewer parameters. We use level set equations and
parameterize the facies boundaries via velocity fields, and we use Karhunen-Loève (K-L) expansion to
parameterize the permeability within each facies in an optimal way.

This decomposition allows us to write the permeability field in an hierarchical way:

k(x) =
∑

i

ki(x)IΩi(x), (3)

where IΩi is an indicator function of region Ωi (i.e., I(x) = 1 if x ∈ Ωi and I(x) = 0 otherwise) and
ki(x) is the permeability within Ωi.

In this paper, we seek the boundaries of the facies using adaptive representation. More precisely, level
set functions τ representing the facies boundaries are defined such that τ = τi for different interfaces.
For the update of the facies, the level set equations (e.g., [5]) will be used. We assume ∂τ

∂s +w ·∇τ = 0,
where w is a vector field that is used to parameterize the velocity field (and subsequently, the interface)
and s is a pseudo-time. τ(x) is the level set function such that a zero level set of τ represents the
interfaces.

The permeability field within each facies is assumed to follow a log-Gaussian distribution with a
known spatial covariance; that is, Y (x,ω) = log[k(x,ω)] follows a Gaussian distribution. For perme-
ability fields given by a two-point correlation function R(x, y) = E[Y (x,ω)Y (y,ω)] (where E[·] refers
to the expectation and x, y are points in the spatial domain), the K-L expansion can be used to
get an expression for the log permeability field Y (x,ω). The expansion is done by representing the
permeability field in terms of an optimal L2 basis given by Y (x,ω) =

∑
i

√
λiθi(ω)Φi(x), where Φi

and λi satisfy
∫
ΩR(x, y)Φi(y)dy = λiΦi(x), i = 1, 2, . . ., where λi = E[Y 2

i ] > 0. By truncating the
K-L expansion, we can represent the permeability field by a few (M) random parameters given by
YM =

∑M
i=1

√
λiθiΦi. In our numerical examples the covariance structure for the ith facies Ri(x, y) is

defined as Ri(x, y) = σ2
i exp

(
− |x1−y1|2

2l2i1
− |x2−y2|2

2l2i2

)
, i = 1, 2, . . . s; li1 and l2i are the correlation lengths

in each dimension, and σ2
i = E(Y 2

i ) is the variance. These lengths can be assumed to be random, and
we have designed an efficient parameterization techniques for it [4]. Thus, the permeability field can be
written as k(θ, τ, l,σ2) =

∑s
i=1 exp(YMi)IΩi(τ)(x). We also use K-L to represent the velocity field w, in

general and achieve a dimension reduction.

3 Likelihood setup and regularity

From the parameterization of interfaces with level sets we can say that the log permeability field Y
is completely known given θ, τ , l and σ2. The function τ can be represented by using the stochastic
representation of w. By using the Bayes theorem, the posterior distribution of the parameters can be
written as

π(θ, τ, l,σ2) ∝ P (z|θ, τ, l,σ2)P (θ, τ, l,σ2) = P (z|θ, τ, l,σ2,σ2
k)P (θ)P (τ)P (l)P (σ2)P (σ2

k).

We note that the hierarchical structure of the model is due to facies and a permeability distribution with
each facies. The likelihood term P (z|θ, τ, l,σ2) is the probability density function ofMVN(F (θ, τ, l,σ2),σ2

k).

In other words, P (z|θ, τ, l,σ2) ∝ exp
(
−‖z−F (θ,τ,l,σ2)‖

2σ2
k

)
.
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The prior distributions are taken as θ ∼ MVN(0,σ2
θ ), τ ∼ MVN(τo,σ2

τ ) and σ2
i ∼ IG(a, b), i =

1, 2, . . . , s. The prior distributions for correlation lengths lij can be taken to be uniformly distributed
over (lmin, lmax).

So the posterior can be written as

π(θ, τ, l,σ2) ∝ exp

(
−‖z − F (θ, τ, l,σ2)‖

2σ2
k

)
exp

(
− θ′θ

2σ2
θ

)
exp

(
‖τ − τo‖

2σ2
τ

)
exp(

b

σ2
)σ−a−1.

We use a Bayesian framework. It can be shown that this Bayesian inverse problem is well-posed by
proving that the posterior measure is continuous with respect to the data in total variation norm. In
particular, we can estimate the error due to the truncation in K-L expansion of the velocity field that
represent the interfaces and permeability fields within each facies. We show that the expectation of an
arbitrary smooth function with respect to the full posterior and the reduced posterior is bounded by
the error in K-L truncation. Moreover, the constant in this estimate is independent of the dimension
of the space, an important feature for practical applications.

4 Efficient sampling

The posterior distribution of the parameters given the data is intractable, so we have to use Markov
chain Monte Carlo methods to sample from the posterior. We denote the vector of all the parameters
(θ, τ, l,σ2) as ν. At each MCMC iteration step, after proposing a new θ, l1, l2,σ2, we need to solve
the eigenvalue problem for the K-L expansion to get the fine-scale permeability realizations. To speed
computations, we can compute the eigenvalue problem (K-L expansion) for a certain number of pairs
of l1, l2 beforehand (see [4] for details) and interpolate them to find the eigenvalues and eigenvectors at
each step in the Metropolis-Hastings MCMC method.

The main disadvantage of the direct MCMC algorithm is the high computational cost of the forward
problem. A large amount of CPU time is spent on simulating the rejected samples, making the direct
(full) Metropolis Hastings MCMC simulations very expensive.

The direct Metropolis-Hastings MCMC method can be improved by adapting the proposal distri-
bution q(ν|νn) to the target distribution by using a coarse-scale model [3]. This can be achieved by a
two-stage MCMC method [4]. First, we compare the fractional flow curves on the coarse-grid model.
One can make the dimension of the parameter space to be random and use a two-stage reversible jump
MCMC method [4]. If the proposal is accepted by the coarse-scale test, then a full fine-scale computa-
tion can be conducted and the proposal further tested as in the direct MCMC method. Otherwise, the
proposal will be rejected by the coarse-scale test, and a new proposal will be generated from q(ν|νn).
The coarse-scale test filters the unacceptable bad proposals and avoids the expensive fine-scale tests for
those proposals. The filtering process essentially modifies the proposal distribution q(ν|νn) by incor-
porating the coarse-scale information of the problem. One of the key ingredients of two-stage MCMC
approach is the choice of approximate models; we briefly discussed this next.

As for an approximate model, we will consider single-phase, flow-based multiscale simulation meth-
ods. This technique is similar to upscaling methods (e.g., [2]) except that, instead of computing effective
properties, multiscale basis functions are calculated. These basis functions are coupled through a vari-
ational formulation of the problem. For multiphase flow and transport simulations, the conservative
fine-scale velocity is often needed. For this reason, the mixed multiscale finite-element method (Ms-
FEM) is used; see [2] for deatils on this method and its use in two-phase flow and transport. In our
simulations, the multiscale basis functions are computed for the velocity once with λ = 1. These basis
functions are used later without any update for solving two-phase flow equations. As a result, we obtain
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Reference log permeability Initial log permeability 

Sampled log permeability Sampled log permeability

Sampled log permeability Posterior mean

Figure 1: Top left: The true log permeability field. Top right: Initial log permeability field. Middle two
and bottom left: Three accepted realizations of log permeability field. Bottom Right: The mean of the
sampled log permeability field.

a coarse-scale velocity field that is used for solving the transport equation on the coarse grid. We also
refer to [4], where various emulators have been developed that can be used as approximate models.

To describe our algorithm, we denote by F ∗
ν the fractional flow computed by solving the problem on a

coarse grid and introduce π∗(θ, τ, l,σ2) ∝ exp
(
−G(‖z−F ∗(ν)‖)

2σ2
c

)
exp

(
− θ′θ

2σ2
θ

)
exp

(
‖τ−τo‖
2σ2

τ

)
exp( b

σ2 )σ−a−1,

where the function G is estimated based on offline computations using independent samples from the
prior. More precisely, by using independent samples from the prior distribution, the permeability fields
are generated. Then both the coarse-scale and fine-scale simulations are performed and ‖z − Fν‖ vs
‖z − F ∗

ν ‖ are plotted. This scatter plot data can be modeled by ‖z − Fν‖ = G(‖z − F ∗
ν ‖) +W , where

W is a random component representing the deviations of the true fine-scale error from the predicted
error. Using the coarse-scale distribution π∗(ν) as a filter, we can describe the two-stage reversible jump
MCMC as follows.

In the first stage, a coarse (approximate) model is run, and the acceptance probability is defined
based on Metropolis-Hastings criteria. At this stage, one can use gradient information or simple random
walk. If the proposal is accepted in the first stage, the fine-scale simulation is run, and the proposal is
accepted or rejected (see [1] for details).

5 Numerical results

For our numerical example, we consider a 50× 50 fine-scale permeability field on the unit square with
only one high conductivity layer. Thus there are two interfaces, one for the upper interface and one
for the lower interface. The permeability field is known at eightlocations along x = 0 and x = 1
boundaries. The ends of the interface are fixed at 0.4 and 0.6. One injection well is placed at (0, 0.5)
and one production well at (1, 0.5). Two-phase flow model with quadratic relative permeabilities are
considered. The log of the permeability field within the channel (middle facies) is assumed to be a
Gaussian process with mean 3, where l1 = 0.3, l2 = .1, and σ2 = .4. The log of the permeability field
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Figure 2: Left: The solid red line designates the fine-scale reference fractional flow, the black line
designates the initial fractional flow and the green lines designate fractional flow corresponding to
sampled permeability fields. Right: Fractional flow errors vs. accepted iterations.

outside the high conductivity is assumed to be Gaussian process with mean 0 and the same covariance
function, where l1 = .2, l2 = .2 and σ2 = .4. We retain the first 20 terms in the K-L. Initially τ ’s are
taken to be equidistant points on the straight line joining the two ends of the interfaces. This approach
is similar to taking w (velocity field in level set equation) to be independent at these points. We run
the both the regular MCMC and two-stage MCMC taking a random walk sampler with σ2

θ = 0.16
and σ2

τ = 0.04. We use the mixed MsFEM described before for the upscaling method in the two-stage
MCMC.

To assess the accuracy of the two-stage MCMC, we perform coarse-scale vs. fine-scale simulations
for permeability samples from the prior. From the cross-plot between Ek = ‖z−F‖ and E∗

k = ‖z−F ∗‖
the correlation coefficient between the two errors are found to be 0.93. The acceptance rate of the
full MCMC is very low, approximately 0.002, using σ2

k = .004. The acceptance rate for the two-stage
MCMC increases to 0.3 using σ2

k = 0.004 and σ2
c = 0.01

Figure 1 shows the reference log permeability field, the initial log permeability field, some of the
sampled log permeability field and the mean of the sampled log permeability field for the two-stage
MCMC. We can see that the sample mean is very close to the reference log permeability field. In Figure
2 (left plot), we plot the initial fractional flow and the fractional flow corresponding to some of the
sampled permeability fields. We observe substantial improvement in fractional flow predictions. The
convergence of the two-stage MCMC is plotted on the right in Figure 2. Clearly, both the two-stage
and fine-scale MCMC methods have similar convergence properties; that is, they reach to the steady
state within the same number of iterations.
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